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Abstract. We consider the Gel’fand-Yaglom equations for free fields of arbitrary spin, in 
the particular case when the field transforms according to a direct sum of inequivalent, 
irreducible finite representations of the proper Lorentz group. Under the assumption that 
the theory carries neither physical states of zero charge or energy density and that the 
mass-spin states are non-degenerate, we obtain the precise forms of the minimal and char- 
acteristic polynomials of the s blocks of the .!.,, matrix, which are then used to obtain new 
necessary and sufficient conditions that the theory be quantizable. The representation 
according to which the field transforms can be depicted graphically in a simple way and we 
take advantage of this to use some simple ideas of graph theory to obtain our results. This 
graphical approach is useful in practical and theoretical considerations in the theory. 
One conclusion is that i t  will probably be necessary to allow repeated irreducible representa- 
tions of the proper Lorentz group for theories of spin greater than eight to be quantizable. 

1. Introduction 

We consider relativistic free field theories based on the equation 

(L,P + ix)$ = 0 (1.1) 
where IC/ is the field variable, L, are matrices and is a real number and 8’ = 8/2x,. We 
adopt the notations and conventions of Gel’fand and Yaglom (Gel’fand et al 1963), who 
have made a thorough study of the field theory of (1.1). Very little has been done on 
finding theories described by (1.1) which are quantizable. Recently Capri and Shamaly 
(1971) and Amar and Dozzio (1972a) have shown how special types of quantizable 
theories can be obtained, basically by requiring that the theory describes a unique mass 
state and that the corresponding nonzero eigenvalue of Lo should be non-degenerate 
except for the natural degeneracy due to spin. Amar and Dozzio have in a second paper 
(Amar and Dozzio 1972b) investigated theories in which Lo is allowed to be non- 
diagonalizable, for as Gel’fand and Yaglom have shown it is only in this case that 
quantizable theories are possible for spins greater than one. The spin block components 
of Lo (the so called ‘s blocks’) are studied individually, and the minimum spin for which a 
spin block is diagonalizable governs the structure of the possible theories. If Lo is 
non-diagonalizable then it is possible to get multiple mass states in the theory. 

A feature of the theories of Capri et al is that II/ may transform according to a reducible 
representation 9 of the Lorentz group 9, which in general can contain repeated 
representations of the proper Lorentz group &fP. When one does allow repeated represen- 
tations, it is difficult to know where to stop, and it is interesting to know what theories are 
t Present address: Department of Mathematics, Liverpool Polytechnic, Liverpool L3 3AF, UK. 
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possible when we explicitly exclude such repeated representations-that is we assume 
that all the representations in W are inequivalent. In this paper we study such theories 
and their quantization in detail. We impose two further very reasonable requirements on 
our theories, namely that there are no physical states corresponding to zero charge or 
energy density, and that there are no two states with the same mass and spin (this is the 
non-degeneracy of mass-spin states of Amar and Dozzio, mentioned above). We study 
the properties of the s blocks for such theories in general, obtaining the exact form of 
their minimal and characteristic polynomials and use these to simplify the conditions of 
quantization, which we express directly in terms of the s blocks. A graphical approach to 
the Gel'fand-Yaglom equation is presented which takes advantage of the simple 
graphical form of the representation W carried by solutions tj of the equations. This 
approach is useful in the development of the general theory and in studying particular 
cases. 

2. The Gel'fand-Yaglom theory 

We assume that the field variable i+b transforms according to some finite dimensional 
representation 9 of the homogeneous Lorentz group 2 In general W is taken to be a 
direct sum of irreducible finite dimensional representations T~ of Pp, the proper Lorentz 
group, and we assume that all of the ti are inequivalent. Then any representation zi in W 
is uniquely specified by an ordered pair of numbers (#), ti)) which are either both integers 
or both half-odd integers, and > It;)[. The representation conjugate to ti, denoted 
T; is then specified by (- t;), t;)). 

A canonical basis { &} where zi E 9;  m = s, s- 1 , .  . . ,-(s - l), -s; 
s = Il$)l, It;)[+ 1,. * . , I ,  - 1, 

can be constructed for W as described in (1). Gel'fand and Yaglom have determined the 
most general form for the L, in the canonical basis, such that (1.1) is covariant under 2 
and is derivable from a real invariant lagrangian density. It turns out that only Lo is 
important, as the Li, i = 1 , 2 , 3  can all be expressed in terms of Lo. In the canonical basis 
Lo has the form 

Lo = [C:6,,,:3 (2.1) 

cgspm> = cf"s,,.s,,. (2 .2)  

where, due to covariance under gP, 

and the Cf" are only nonzero if the representations t and T' are 'interlocked' or 'linked', 
ie t and t' are such that ro = lo & 1, or I; = I1 & 1. The nonzero C:' have the form 

U09 I ; )  = ( lo+ 1911) 

c:' = p(s, l0)C"' 

C:" = p(s, 10)C'" (2.3) 

(2.4) 

where the C"', C"' are arbitrary complex numbers, independent of s and m, and where 
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p(s ,  n) = J(s+ n - l)(s - n). The further conditions for space reflection covariance and 
lagrangian origin show that all the elements Cf", C;'T, Ct'r'; C:''T' depend on the single 
complex number C"', and they are all nonzero if and only if C"' is. 

If (1.1) is to be derivable from a real invariant lagrangian density, then we need an 
invariant non-degenerate hermitian form in the field variables, with which to construct 
this. As Gel'fand and Yaglom have shown, the most general such form in W is given in the 
canonical basis by 

- ( $ 1 , $ 2 )  = WILl 

= 1 a"'e,xf,yf, (2.5) 
rsm 

where t,hl = (xf,,,), $2 = (yf,) and e, = ( -  l)['], and A is non-singular. The a''' satisfy 
and in fact we can always choose a canonical basis such that a*'' = f 1. (1.1) 

can now be derived from the lagrangian density: 
aTT'  - a r ' r  - 

(2.6) 
1 

L[$(x)] = i $ + ~ ( ~ , ~ " +  ix)$ 

which is invariant. Reality of L[$(x)] leads to, in particular 

L ; A =  ALO. (2.7) 

Now (2.2) shows that Lo can be put in block diagonal form, by grouping together all 
basis vectors tim , m = - s, - (s - l), . . . , s - 1, s corresponding to the same value of s. 
These blocks are called 's blocks' and have the typical form 

A, = [C;']. 

We always suppress the m dependence in the s blocks. Each of the elements in an s block 
is in fact a (2s+ 1) x (2s+ 1) scalar matrix and so can be treated like a scalar. 

A nonzero eigenvalue p of an s block is a 2s + 1 fold eigenvalue of Lo and specifies a 
state of rest mass x/p and spin s. In this way, the s blocks of Lo provide a list of all 
the states described by the field theory. Further, we shall see later that the conditions for 
quantization of the theory can be expressed in terms of relations on the s blocks. For the 
remainder of this section we restrict ourselves to integral spin theories, for the purposes of 
illustration, the modifications for half-odd integral spin theories being fairly obvious. 

All finite dimensional representations of LYP which carry an integral spin representa- 
tion can be obtained by letting I o  = 0, 1,2, .  . . and I ,  = 1,2,. . . where I ,  > 1I,1. Plotting 
these representations in the ( l o ,  I , )  plane gives a fan of points, and W can be completely 
specified by a finite subset of these points (figure 1). We denote a point ( l g ) ,  I?) by the 
representation zi to which it corresponds. The s blocks of Lo will only have rows and 
columns which correspond to representations zi which carry a spin s. I f j  is the maximum 
value of s occurring in the theory (ie the maximum possible spin), then inspection of the 
graph shows that these representations will be only those which lie in or on the rectangle : 

lo = -s, 

I ,  = s + l ,  

lo = s 

1, = j+l .  

Consider this subset of points and construct an abstract linear graph as follows. Draw 
a directed branch from the point 'ti to tj if and only if C ~ I ~ J ,  in the s block is nonzero. 
Since this only occurs if zi and tj are linked, the resulting graph will be a subgraph of a 
lattice type graph typified by figure 2. Associating the element C ~ I ' J  with the branch from 
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4 
Figure 1. 

-4  -3 -2 -I 0 I 2 3 4 
LO 

Figure 2. 

T~ to z j  gives a pictorial representation of the s block which can be very useful in its 
construction. All the conditions on the C;l7i due to covariance and lagrangian origin can 
be transposed onto the graph and then the s blocks for any representation W can be 
written down immediately from the graphical plot of W. Further, the graph correspond- 
ing to a given s block can be used as a visual aid in studying the properties of the s 
blocks, and dealing with particular theories. Because of the simple form of the graph, 
this is often useful in the following sections, where we first obtain the exact form of the 
characteristic and minimal polynomials of the s block, subject to certain assumptions, 
and then use these to obtain conditions on the s blocks for quantizable theories. We use 
two simple ideas from graph theory in the following : 

(i) The graphical interpretation of the determinant of a matrix (Harary 1959). 
(ii) The graphical interpretation of the elements of powers of a matrix. 

For our purposes, the intuitive idea of a (directed) ‘loop’ in a graph will suffice. A ‘path’ 
in a directed graph is a connected sequence of branches all of like direction, while the 
‘length’ of the path is the number of branches it contains. A loop is a closed path. 
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3. Characteristic and minimal polynomials of the s blocks 

The results of this section apply to both integral and half-odd integral spin theories. 
The determinant of a matrix can be interpreted graphically as follows. Let { Se any 

directed graph with n nodes and A([) any n x n matrix which can only have nonzero 
elements in the positions i, j if there is a directed branch from node i to nodej in [. Then 
each branch i + j of c represents a possible nonzero element mij  of A([). Any term in the 
determinant I&(() 1 must be of the form 

+ m i i , m z i 2 . .  . m,in 

where i , i , . .  . in is some permutation of the numbers 1 to n. Since any permutation can 
be written as a product of disjoint cycles, the nonzero terms of lA'(c) I must correspond to 
sets of disjoint cycles, or loops, of the graph [. Now consider a lattice type graph G, such 
as that of an s block, and with associated matrix M(G). Let mij  be the i , j  element of M(G) ,  
and consider the matrix M ( G )  - t l .  This will be represented by a lattice graph of the same 
type as G, except that each node has a self loop. which corresponds to the nonzero 
diagonal element - t. Apart from these self loops, all loops of such a graph clearly have 
an even number of branches. The self loops have one branch. ,4ny nonzero term of the 
expansion of IM(G)- tZ l  must be of the form 

+mil j lmi l j2 . .  . m i  P J P  . ( - t )"  

where p must be even, since the m part of this term must correspond to a union of disjoint 
loops with an even number of branches. The ( -  t)" part represents the self loops of r 
nodes. Since r + p  = n, r is even or odd with n, and it follows that for such a lattice type 
graph IM(G)-tZI has the form tPi( t2)  if n is odd and P2( t2)  if n is even, where P ,  and P2 are 
polynomials. The above derivation also suggests a method of writing down the character- 
istic polynomial of M ( G )  directly from the graph (Cox 1972). 

It follows from the above that we can write the characteristic polynomial A(t) of an 
n x n s block A in the form 

k 
A(t) = t P  JJ (t2-m?)li 

i =  1 
(3.1) 

where p +E:= r i  = n, the mi are all distinct, and none of the r i  are zero. Now the minimal 
polynomial of A must contain the same irreducible factors as the characteristic polyno- 
mial and so will have a form similar to that above. However, as Udgaonkar (1952) has 
shown, a necessary and sufficient condition for a theory to have no physical states (those 
corresponding to nonzero eigenvalues of Lo)  with a zero charge or energy density is that 
the minimal polynomial of Lo should have no repeated factors corresponding to non- 
zero eigenvalues. Since the minimal polynomial of Lo is the least common multiple of 
the minimal polynomial of the s blocks, it follows that for such 'physical' theories the 
minimal polynomials of the s blocks must contain no repeated factors corresponding to 
nonzero eigenvalues and must therefore be of the form 

k 

m(t) = t q  JJ ( tZ-m:)  
i =  1 

(3.2) 

where q + 2k < n. 
We will now make a further reasonable assumption, namely that the only degeneracy 

possessed by a state characterized by a nonzero eigenvalue ;1 of an s block, shall be 
attributable to the spin components m = s, s - 1,. . . , - (s - l), - s. So, to each nonzero 
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eigenvalue of an s block there is exactly one independent eigenvector. With this assump- 
tion and with the minimal polynomial (3.2) it follows that ri  = 1 for all i, in (3.1). (To see 
this, consider for example the Jordan normal form of the s block, given (3.2) as the 
minimal polynomial and unity as the geometric multiplicity of each nonzero eigenvalue.) 
Thus the characteristic polynomial of an s bldck must be of the form 

k 
A(t) = t n - l k  n (tZ-m:) 

i =  1 
(3.3) 

if the physical states are non-degenerate and the charge and energy densities are non- 
vanishing. The mi in (3.3) are all distinct. Conversely, if the s block has minimal polyno- 
mial (3.2) and characteristic polynomial (3.3) then the physical states are non-degenerate 
and the charge and energy densities are nonzero. 

Finally, for such theories, the eigenvalues +-mi are all real, since from (2.7) and the 
fact that A does not mix up s subspaces (see (2.5)), we have 

ASA, = AsAS (3.4) 
for any s block A,, where A, is the restriction of A to the s subspace. Thus if mi is a 
nonzero eigenvalue of A, and t+hi its eigenvector then from (3.4) we deduce 

(mi-HiJ$!A$i = 0. 

For theories we are considering, with nonzero energy and charge, $[A$i # 0 and so 
mi = Hii, all the eigenvalues mi are real. 

The field energy and charge densities are the real quantities 

H = i(Lo$,do$) 

P = (~0$9$) 

$ = ( 4 + ( k , r ) e x p [ i ( k . x + o k r t ) ] + 4 - ( k , r ) e x p [ i ( k  . x - - k , t ) ] )  

respectively. I) can be expanded in eigenfunctions of a,, as follows : 

kr  

where 4 + ( k ,  r )  and 4 - ( k ,  t )  satisfy 

( L  * k - w k r L O  + X)++(k, r )  = 0 

( L  . k + W k r L O  + X)4 -(k,  r )  = 0 

and w k r  = k ,  = [ / c ’ + ( ~ / m , ) ~ ] ’ / ’ ,  m, being the nonzero eigenvalues of L,. 

k = ( k ,  , k,, k 3 )  and L = (L,,, L,, L3).  

From (4.4) and (4.5) we obtain the orthogonality relations : 

+L(k, r’)ALo4-(k,  r )  = 0 for any r,  r’ 

and 

4L(k,  r’)ALo4+(k, r )  = $!. (k, r’)ALo4-(k,  r )  = 0 

if &)kr*, # W k r .  
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Substituting (4.3) into (4.1) and (4.2), integrating over a box, absorbing any constants 
in 4+(k ,  I )  and $-(&, I )  as necessary, and using (4.6) and (4.7) we can now write the total 
energy and charge in the form 

E = 1 ukr[$'_(k, r&!'O4-(&, r ) -4? (&,  r)ALO4+(k, r)]  
k r  

The quantization procedure must ensure that E is a sum of positive contributions and Q 
is of the form Z ( N  - M) where N counts the particles and M counts the antiparticles. 
Since both of these quantities transform like the fourth components of four-vectors, we 
can restrict ourselves to the rest frame for these considerations of definiteness. 

In the rest frame (4.4) and (4.5) show that 4+(0, I )  and 4-(0, r )  are eigenvectors of Lo 
corresponding to eigenvalues + m, and - mr respectively. Thus 4 +(O, I )  and 4 - (0, I )  can 
be expanded in eigenvectors of the s blocks : 

4+@, I )  = C aors4+(0, s), 4-@, r )  = C 6 o r S 4 - ( O ,  r ,  s). 
S S 

4+(0, r ,  s) and 4-(0, I ,  s) are eigenvectors of the s block corresponding to eigenvalues 
+ mr and - mr respectively. 

Since A does not mix up the s blocks of Lo ,  we can now write 

and the aors,  bOrs are now interpreted as operators in the Hilbert space of states and + 
denotes the adjoint in this Hilbert space. So the definiteness properties of the quantized 
energy and charge depend ultimately on the quantities c+(O, r,  s) and f - (O,  I ,  s). The usual 
spin-statistics connections will be satisfied if, and only if, in the case of: 

(i) Integral spin fields. t + ( O ,  r, s)  have the same sign for all r,  s and in each case 
c-(O, r,  s) has the opposite sign to c+(O, r, s). 

(ii) Half-odd integral spin fields. f+(O,  r, s )  have the same sign for all r, s and in each 
case f - (O,  r, s) has the same sign as c+(O, r, s). 

These are the final conditions we impose on the s blocks in order to get good quantiz- 
able theories. 
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Now let A be any n x n s block. Then from the last section, the minimal polynomial of 
A must have the form (3.2) and so A must satisfy the polynomial equation 

k 
f ( ~ )  = A P  n ( A ~  -m;) = 0, mi # 0 (4.10) 

for any p 2 q. The reason for considering the polynomial f(t), instead of the minimal 
polynomial m(t) is that while it is straightforward to find an s block satisfying some 
polynomial equation, it is very difficult to ensure that this is the minimal polynomial, 
which may be one of lesser degree. In this section f(t) can be any polynomial which 
annihilates the s block A, but need not necessarily be the minimal polynomial. 

i =  1 

Now consider the polynomial P+,(A)  such that 

(A-m,)P+, (A)  3 f(A) = 0. (4.11) 

Since P+,(A)  lacks an irreducible factor, A - m , ,  of the minimal polynomial, it is non- 
zero, and by definition its columns are either zero or eigenvectors of A corresponding to 
the eigenvalue m,. But by the discussion of 8 3 and the form of the minimal and character- 
istic polynomial of A,  there is only one such independent eigenvector and so the rank of 
P+,(A)  is unity, and if $ is an arbitrary vector in the s subspace, then 

$ + r  = P+r(A)$ (4.12) 

is up to a factor the eigenvector of A corresponding to eigenvalue m,. Similarly, if 
P+,(A)  is the matrix polynomial such that f(A) ( A  + m)P-,.(A), then the rank of P - , ( A )  is 
unity and 

$ - r  = P-r(A)$ (4.13) 

is up to a factor the eigenvector of A corresponding to eigenvalue - m,. For the s block 
we therefore have 

c+(O, r ,  s) = $! ,AA$+,  = $'P!r(A)AAP+r(A)$ 

= $+AAP+r(A)P+r(A)$ 

= mrp+r(mr)$tAp+r(A)$* (4.14) 

So, since m, can be assumed positive : 

Sgn(r+(O, r,  = sgn(P+r(mr)). sgn($tAP+,.(A)$). (4.15) 

Now consider sgn($+AP+ ,(A)$). Since A is non-singular, 

rank(AP+,(A)) = rank(P+,(A)) = 1, 

so A P + , ( A )  has exactly one nonzero eigenvalue, which is real, since AP+, (A)  is hermitian. 
$tAP+r(A)$  will be positive or negative semi-definite according as this single eigenvalue, 
given by the trace of AP+JA) ,  is positive or negative. Hence 

sgn($tAf'+r(A)$) = sgn[Tr(AP,,(A))l (4.16) 

and (4.15) becomes 

sgn(c+(O, r ,  = sgn(P+r(mr)) . sgn[Tr(Af'+,(A))j. (4.17) 

Similarly we find 

sgn(c-(O, r ,  s)) = - sgn(P-,(m,)) . sgn[Tr(AP-,(A))]. (4.18) 
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Noting that 

P- ,( - m,) = ( - 1)p + P+ r(m,) 

and 

where k ,  is the number of mi > m,,  we can write (4.18) as 

sgn(c_(O, r ,  s)) = ( -  l ) p + k r  sgn[Tr(AP-,(A))]. 

(4.19) 

(4.20) 

(4.21) 

We now examine the two trace expressions, Tr(AP+,.(A)) and Tr(AP-,.(A)). Consider 
quantities of the type Tr(AA') where 1 is some natural number. Now 

n 

Tr(AAi) = (A)ij(Af)ji 
i , j =  1 

(4.22) 

and (A)ij = 0 unless row i and column j correspond to two mutually conjugate repre- 
sentations on the graph of the s block. The only nonzero elements (A' ) j i ,  on the other 
hand, are those corresponding to all paths in the s block graph of length 1 from the 
representation denoted by j to that denoted by i .  It follows therefore from (4.22) that the 
only nonzero terms in Tr(AA') are those corresponding to paths of length 1 between 
mutually conjugate representations in the s block graph. We therefore have : 

(i) For integral spin s blocks: 

Tr(AA') = 0 if 1 odd. 

(ii) For half-odd integral spin s blocks: 

Tr(AA') = 0 if 1 even. 

(4.23) 

(4.24) 

Using these results we now consider separately the case of integral spin and half-odd 
integral spin. 

4.1. Integral spin 

If p odd then 

Tr(AP+,.(A)) = Tr(AP-,.(A)) = Tr(p  + 1) 

if p even then 

Tr(AP+,.(A)) = -Tr(AP-,(A)) = mrT,(p) 

where 

?;(x) = Tr AA" n ( A z  -m?) ( i t r  

(4.15) 

(4.26) 

(4.27) 

It now follows from (4.17) and (4.21) that for p odd or even, for integral spin theories of 
our type, we always have 

(4.28) 
So this part of the condition for quantization is always satisfied. Finally all the c+(O, r ,  s) 
must have the same sign, say positive, for all r ,  s and from the above discussion. this 

sgn(c+(O, r,  s)) = -sgn(c-(O, r, s)). 
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occurs if and only if, for each s block A having nonzero eigenvalues: 

if p odd 

sgn( T’p + 1)) = ( - (4.29) 

i fp  even 

sgn(T,(p)) = ( - 1Ikr (4.30) 

where k, is the number of mi greater than m,, and T,(x)  as defined at (4.27). In the case 
when there is just one pair of nonzero eigenvalues for the s block then k, should be taken 
as zero to obtain the appropriate conditions. 

4.2. Half-odd integral spin 

In this case, by analogous arguments to the above, we find that the conditions 

sgn(c + (0, I, SI) = sgn(c - (0, r, 4) 
are always satisfied ; while all the c+(O, r, s) are of the same sign if and only if: 

i f  p odd 

sgn( T,(P)) = ( - 1 )kr 

sgn(T(p+ 1)) = (-  I F .  

i fp  even 

Note that these are the same conditions as for integral spin, except that ‘p odd’ and ‘p 
even’ are interchanged. 

So finally, to find good theories for integral spin without repeated representations, or 
states of zero charge or energy, and for which the eigenstate corresponding to a given 
mass and spin is unique ; it is necessary and sufficient to choose the s blocks so as to have a 
characteristic polynomial of the form (3.3), to satisfy (4.10) and also (4.29) or (4.30). 
Similarly for half-odd integral spin. In practice the graphs of the s blocks can be useful in 
explicitly writing down these conditions in particular cases. 

The study of the quantization of the Gel’fand-Yaglom equations is difficult in general, 
because of the complicated algebra involved. Amar and Dozzio (1972b) have obtained 
necessary restrictions on the possible chains or graphs for quantizable theories subject 
to the diagonalizability of the s blocks. In the case of unique mass the restrictions on the 
graphs become sufficient also. Thus we get a general graph for theories ofgiven maximum 
spin, such that any quantizable theory must be constructed from a representation 9 
corresponding to a subgraph of this graph. For a particular type of theory, we have given 
specific necessary and sufficient conditions such that any given subgraph corresponds to 
a quantizable theory. 

By counting the number of conditions to be satisfied, and the number of available 
arbitrary parameters C“, it seems unlikely that there are quantizable theories of the 
type we have been discussing, for spin greater than eight. So it seems possible to list all 
such theories which are quantizable, while if we want theories for spin greater than eight 
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we must presumably introduce repeated representations. It is possible to restrict the 
graphs for good theories further than Amar and Dozzio have done. For example, a 
representation W in which the representations corresponding to the maximum spin j 
are not all linked by a connected path on the J block graph, cannot give a quantizable 
theory of our general type. This follows because thej block characteristic equation would 
have repeated nonzero roots, which by (3.3) is forbidden. 

To decide whether a particular representation 4e can support a good theory, it may 
not be necessary to go through the details of the analysis we have described. A reasonable 
idea can be obtained by counting the available C"', which depends on the number of 
branches in the graph of 9, and comparing this with the number of conditions to be 
satisfied, which depends on the required form of the equations (3.3), (4.10) and also on the 
trace conditions. Examples of quantizable theories and further details of the types of 
graphs for such theories will be given in a further paper. 
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